Sum-of-Squares Optimization without Semidefinite Programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization

In recent years, optimization theory has been greatly impacted by the advent of sum of squares (SOS) optimization. The reliance of this technique on large-scale semidefinite programs however, has limited the scale of problems to which it can be applied. In this paper, we introduce DSOS and SDSOS optimization as more tractable alternatives to sum of squares optimization that rely instead on line...

متن کامل

Discrete Transforms, Semidefinite Programming, and Sum-of-Squares Representations of Nonnegative Polynomials

Abstract. We present a new semidefinite programming formulation of sum-of-squares representations of nonnegative polynomials, cosine polynomials and trigonometric polynomials of one variable. The parametrization is based on discrete transforms (specifically, the discrete Fourier, cosine and polynomial transforms) and has a simple structure that can be exploited by straightforward modifications ...

متن کامل

Multivariate Arrival Rate Estimation by Sum-of-Squares Polynomial Splines and Semidefinite Programming

An efficient method for the smooth estimation of the arrival rate of non-homogeneous, multi-dimensional Poisson processes from inexact arrivals is presented. The method provides a piecewise polynomial spline estimator using sum of squares polynomial optimization. It is easily parallelized exploiting the sparsity of the neighborhood structure of the underlying spline space; as a result, it is ve...

متن کامل

A Sum-of-Squares and Semidefinite Programming Approach for Maximum Likelihood DOA Estimation

Direction of arrival (DOA) estimation using a uniform linear array (ULA) is a classical problem in array signal processing. In this paper, we focus on DOA estimation based on the maximum likelihood (ML) criterion, transform the estimation problem into a novel formulation, named as sum-of-squares (SOS), and then solve it using semidefinite programming (SDP). We first derive the SOS and SDP metho...

متن کامل

Least-squares orthogonalization using semidefinite programming

We consider the problem of constructing an optimal set of orthogonal vectors from a given set of vectors in a real Hilbert space. The vectors are chosen to minimize the sum of the squared norms of the errors between the constructed vectors and the given vectors. We show that the design of the optimal vectors, referred to as the least-squares (LS) orthogonal vectors, can be formulated as a semid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2019

ISSN: 1052-6234,1095-7189

DOI: 10.1137/17m1160124